Challenges in refractory design

DI Dr. Roland Nilica

Disclaimer:

We assume that RHI AG will be mentioned as the owner of the photographs. In addition, we state explicitly that all utilisation rights are with RHI AG and every further use and/or publication requires written permission from RHI AG.

www.rhi-ag.com EXCELLENCE RFHI

Workshop: Hochtemperatur Werkstoffe für den Leichtbau, Hanau 22.01.2015

Content

- Introduction
 - > Refractory Essential for all basic material industry
 - > RHI on one view
 - > Refractory consumption

Demands on refractories

- > Definition: Refractory
- > Availability of raw materials
- > Raw materials and main users
- > Exposure and typical design concept
- > Examples
- Important material properties of refractories
 - > Dense refractories
 - > Insulating materials
 - > Overview of refractory insulating materials
- Summary

2 Challenges in Refractory design; 22.01.2015

Inroduction

- Refractory Essential for all basic material industry
- RHI on one view
- Refractory consumption

Refractory – Essential for all basic material Industry

RHI is a vertical integrated global supplier of premium grade refractory products, systems and services, which are essential for industrial high temperature processes more than 1.200 °C

RHI on one view

Basic data

- Focus on production, sales and installation of premium grade refractory products
- Key figures see: <u>http://www.rhi-ag.com/internet_en</u>
 32 production- and over 70 sales departments with app.
 8.000 employees
- Global partner for over 10.000 customers in more than 180 countries
- Technology leadership with market-oriented R&D-facilities and made- to- measure products

selected key customer

Refractory consumption

Materials used for a car:

- Steel
- Aluminum
- Glass
- Plastics
- Copper
- Electronics

Involved refractory consumers:

- Iron and steel industry
- Aluminum industry
- Glass industry
- Chemical industry
- Non-ferrous industry (base metals)
- Semiconductor and precious metals industry

Refractory consumption

Refractory consumption for 1 t product:

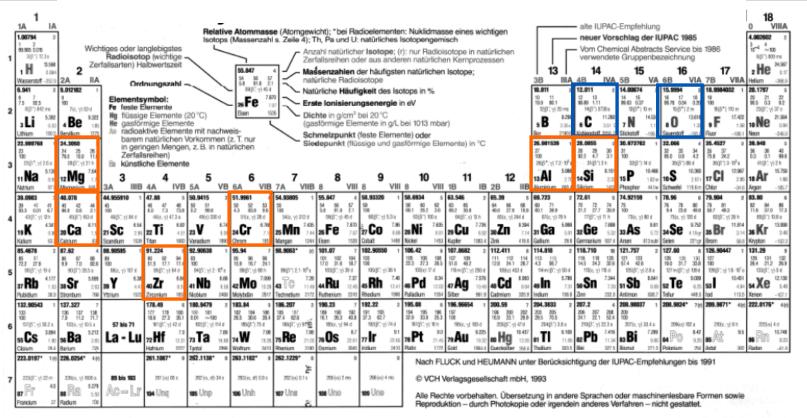
Steel	10-12 kg
Glass	4 kg
Cement	1 kg
Lime	0,7 kg
Copper (base metal)	6 kg
Waste	5,5 kg

Worldwide the total high quality refractory consumption is estimated to app. 20-25 billion t.

Demands on refractories

- Definition: Refractory
- Availability of raw materials
- Raw materials and main users
- Exposure and typical design concept
- Examples

Definition: Refractory

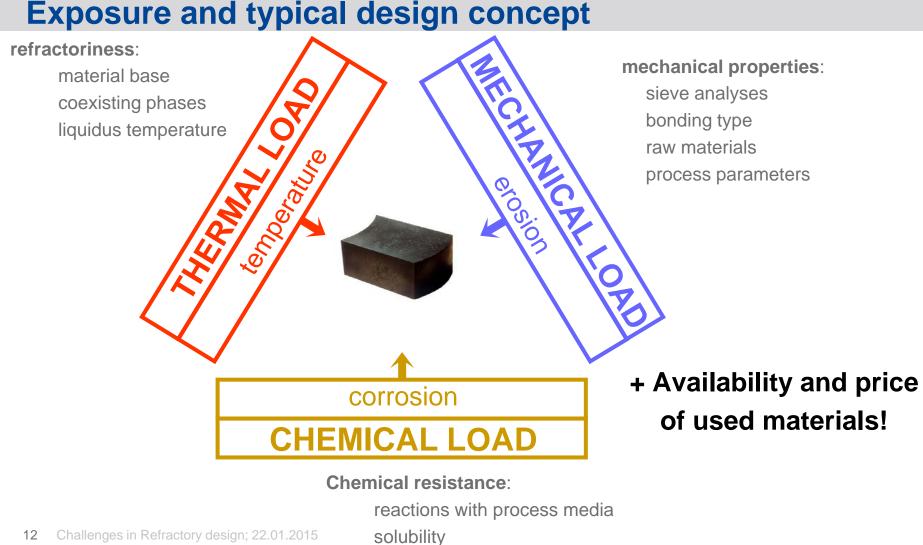

DIN 51060 / ISO/R 836

fire resistant	below	1.500 °C
refractory	min.	1.500 °C
highly-refractory	min.	1.800 °C

Most common: Materials which can withstand **T >600°C** are referred to refractory materials.

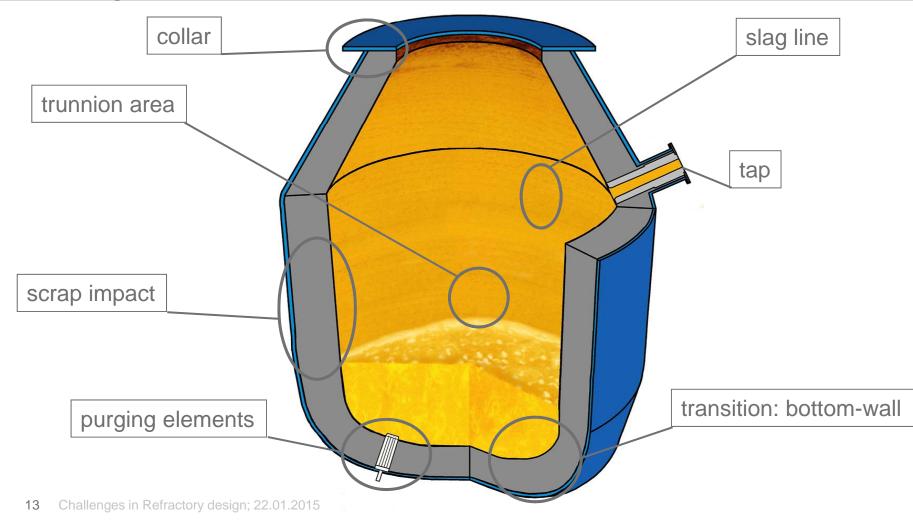
Availability of raw materials

		_	_		_		_	-	_	-	_		_		_		_		_		_		_				_	
	138.9	055	2	140.115	4	140.90765	1	144.24	7	146.9151*	(1)	150.36	7	151.965 3	2 15	7.25	7	158.92534	1	162.50	7	154.93032 1	167.26	6	168.93421	173.04	7	174.957 2
	138	139 98.9		138 140	142	141 100		142 14 27.1 20.0	146 17.2			147 152 15.0 26.7	54 227	151 158 47.8 52.2	15	6 158 15 24.8	190 21.9	159		162 163 1	194 28.2	165	166 16	67 198 2.9 26.8	169	172 173 21.9 10.1	174	175 176
6		(B. 7)	40.1	141F.1		- Ma(β.) 1	N d	147(37,		947(67) 21		103(67, 1) 4	7h	152(c, y) 13.3 a	1	TEB(c, y) 24	63	100(07, y) 72 0	:	195((87, 1/) 2	h.	16m (57, y) 1200 a	100(87)9d	170(BT; y) 129 d	199(c, y) 32	d	177 B", 1/ 7.6
Ŭ,	57 Li	3	5.577	58 Ce	5.47	Pr	5.42	∞Nd	5.49	Dm	5.55	₀₂Sm	5.63	63Eu 5.6	2	Gd	6.14	sTb i	85	₀Dy ¹	5.93	67HO 8.78	••Er	6.10	61 03	"Yb °	254	5.428
	57	a	6.16	28 00	6.77	59	6.48	100 TUL	7.00	010.000	7.22	62 0111	7.54	63 LU 32	3 64	uu	7.89	60 I I I	25	10 b y	6.56	6/110 B.B	00	9.05	69 1 1 1 1 2	70 1 10	6.97	7124 834
	Lartha	in	925	Cer	758	Praseodym	931	Neodym	1010	Promethium	1380	Samarium	1072	Europium 82	2 Ga	doinium	1211	Terbium 13	90	Dysprosium 1	429	Holmium 1470	Erbkum	1522	Thulium: 154	Ytterbium	824	Lutetium 1686
	227.0	278*	2(r)	232.0381	Z	231.03588	2(r)	238.0289	1 3	237.0482*	(1)	244.0642*	(1)	243.0614*	24	7.0703*	0	247.0703*	0	251.0796*	0	252.0829* 0	257.095	i1* o	258.0986*	259.1009*	0	250.1053* 0
				-6-10-4	32 	231 234 ~100 ~10	4	234 235 0.005 0.72	238																	1		
7	227	(BT) 21			4 · 10 ¹⁰ a	234(a, yl 33	3·10 ⁴ a	238(o) 4			1242	244(a) 8.3-1	0 ⁷ a	243(o, y) 7370 a	2	47]a, y 18-	1172	247(a, y) 1380	a	251 (cs, y) 898	la	252(a, y) 472 d	257(0,	y) 101 e	258(o) 56 d	259(o, c) 58	n	290 (o) 3 m
		n	6.9		6.95	. Da		-11	6.08			Bu	5.8	- Am	۹ .	Cm		- Rk		- Cf		- Fe	Fr	กก	- Mid	Ma	1	
	89.00	110	10.07	90	11.72	81 1. (21	15.37	120	18.97	andb	21.41	941710	19.74	2010/0111111	(I SO	Sunn	13.51	1 BW 13	25		15.1	39 (5-0)	100 0 0	uu	10100000	102 100	- 1	103 🗐
	Actiniu	m	1050	Thorium	1750	Protactinium	1554	Uran	1132.3	Neptunium	640	Plutonium	641	Americium 99	4 0.0	nium	1340	Berkelium 9	86	Calfornium	900	Einsteinkum	Fermium		Mendelevium	Nobelium	- 1	Lawrencium


10

Raw materials and main users

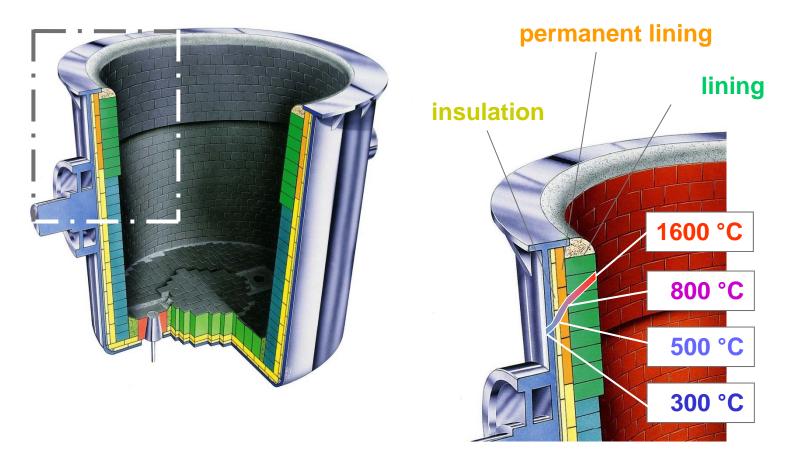
silica	chamotte	bauxite	chrome ore	corundum	zirkondioxi de	doloma	magnesia
quartz	refractory clay	mix	chromite	aluminiumdi -oxide	baddeleyite	dolomite	magnesite
glass- industry	all industry	all industry	steel, glass, cement, non- ferrous	all industry	steel industry	steel industry	steel, cement, non- ferrous
1600 °C	1300 °C	1500 °C	1700 °C	1650 °C	1800 °C	1750 °C	1800 °C
	AC	D		NEU	TRAL	BA	SIC



Exposure and typical design concept

Example: wear of a steel converter

Example: wear of a steel converter

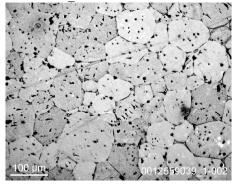


partial loss of wear lining

14 Challenges in Refractory design; 22.01.2015

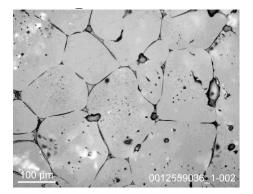
Example: complex lining of a steel ladle

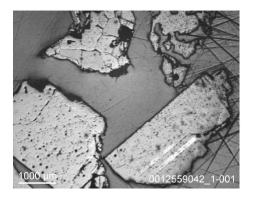
Important material properties of refractories


- Chemical and mineralogical composition
- Density and porosity
- Mechanical properties
- Alteration behaviour

Chemical and mineralogical composition

- Material selection according to application:
 - > Reduction of chemical wear: coexistent phases of refractory and process media
- Purity
 - > Impurities lower liquidus temperature
 - > Impurities along grain boundaries promote diffusion and corrosion


Example MgO:


standard sintered magnesia

density	> 3,38 g/cm ³
PCS*	60–120 µm
MgO-content	> 95%

17 Challenges in Refractory design; 22.01.2015

large crystal sintered magnesiadensity> 3,41 g/cm³PCS*> 150 μmMgO-content> 97%

fused magnesiadensity> 3,50 g/cm³PCS*> 500 μmMgO-content> 96%*PCS= Periclase Crystal Size

Density and porosity

- Targeted values are dependent on application:
 - > High density:
 - > good wear resistance
 - > High toughness
 - > Bad insulation behaviour
 - > Alterations: low risk of infiltration

target: theoretical density of raw materials used

pure MgO brick pure Al_2O_3 brick fused cast ZrO_2

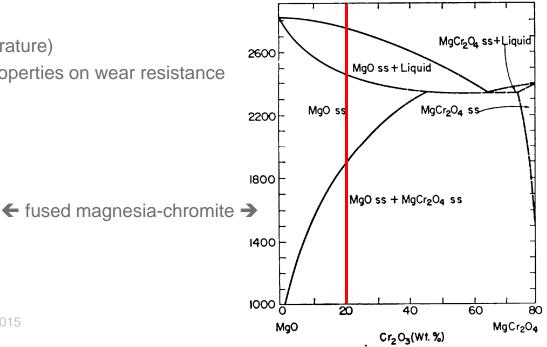
2,96 g/cm³ (limit 3,56 g/cm³) 3,23 g/cm³ (limit 4,00 g/cm³) 5,29 g/cm³ (limit 5,50 g/cm³)

> Low density

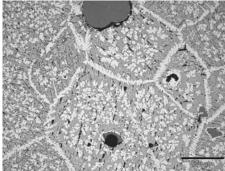
target as low as possible: < 1,00 g/cm³

- > Low wear resistance
- > High thermal insulation
- > Low toughness
- > Danger of strong alterations during service

Mechanical properties


- At room temperature
 - > Can be measured to a certain degree
 - > Most time: destructive testing
 - > Important: damage tolerance

At "service" conditions:

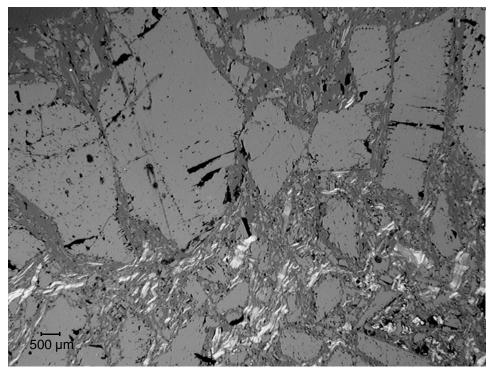

- > Unknown in many cases
- > Difficult to measure (temperature)
- > Complex interactions of properties on wear resistance

- > Dense refractory
 - 40 -150 N/mm²
- Lightweight insulating brick
 0,5 5 N/mm²

room temperature

19 Challenges in Refractory design; 22.01.2015

Alteration behaviour


- Alteration appears due to:
 - > Temperature load: further sintering, re-crystallisation
 - > Chemical reactions with process media
 - > Infiltration by melts like: metals, slags, glass, salts, condensates

Result:

- > Change of physical and chemical properties
- > Anisotropy may occur

Alteration behaviour

MgO-C brick showing carbon burn off, loss of binding matrix and elongated MgO-grains

"alkalibursting" on the wall of a cement cooler; big areas fall off due to irreversible expansion

Important material properties of refractories

- Dense refractories
- Insulating materials
- Overview of refractory insulating materials

ANKROM B65

Dense refractories

- Defined porosity < 45%
- Bonding type:
 - > ceramic
 - > organic (carbon bond)
 - > hydraulic
- Wear and permanent lining
- Enables process
- Guarantees safety

Ge	General information						
Clas	ssification	Magnesia-chromite product type MCr50 ISO 10081-2					
Mai	in raw material components	Chrome ore, Sintered magnesia					
Bon	nding type	Ceramic					
Mai	in Application(s)	Copper, Nickel, Lead					

Chemical analysis									
MgO Cr_0, Al_0, Fe_0, CaO Si0_									
58.0%	19.0%	6.5%	14.0%	1.4%	0.9%				
Determination on fire	Determination on fired substance (1025 °C / 1877 °F) acc. to EN ISO 12677								

Physical properties				
Bulk Density		3,21	[g/cm ³]	EN 993-1
Apparent Porosity		17,5	[vol%]	EN 993-1
Cold Crushing Strength		60,0	[N/mm ²]	EN 993-5
Hot Crushing Strength (1500 °C /	2732 °F)	10,0	[N/mm ²]	
Hot Modulus of Rupt. (1400 °C / 2	2552 °F)	8,0	[N/mm ²]	EN ISO 1927-6
Thermal Expansion	500 °C / 932 °F	0,41	[%]	EN 993-19
	750 °C / 1382 °F	0,65	[%]	EN 993-19
	1000 °C / 1832 °F	0,94	[%]	EN 993-19
	1200 °C / 2192 °F	1,20	[%]	EN 993-19
	1400 °C / 2552 °F	1,47	[%]	EN 993-19
	1600 °C / 2912 °F	1,70	[%]	EN 993-19
Refractoriness under Load T _{0.5}		> 1700	[°C]	ISO 1893
Res. to Thermal Shocks Air		> 45	[cycles]	
Thermal Conductivity	500 °C / 932 °F	2,70	[W/mK]	DR. KLASSE
	750 °C / 1382 °F	2,60	[W/mK]	DR. KLASSE
	1000 °C / 1832 °F	2,60	[W/mK]	DR. KLASSE
	1200 °C / 2192 °F	2,60	[W/mK]	DR. KLASSE

LEGRAL 40/08

Insulating materials

- Challenges
 - > High mechanical strength
 - > Low thermal conductivity
 - > High and defined porosity
 - > High classification temperature
 - > Volume stability at high temperature
 - > Should be resilient like ceramic fibres

General information	
Classification	Insulating refractory brick type 140-1,0-L ISO 2245
Main raw material components	Fireclay, Kyanite
Bonding type	Ceramic
Temp. limit for application	1.425 °C

Chemical analysis								
Na ₂ O	Fe_O	CaO	K_0	TIO2	SiO2			
0.7%	1.0%	1.0%	1.1%	1.3%	38.0%			
Al ₂ O ₃								
56.0%								
Determination	Determination on fired substance (1025 °C / 1877 °F) acc. to EN ISO 12877							

Physical properties				
Bulk Density		1,12	[g/cm ³]	ISO 5016
Cold Crushing Strength		3,5	[N/mm ²]	ISO 8895
Permanent Linear Change		1,20	[%]	ISO 2477
Temperature for PLC		1 400	[°C]	
Modulus of Rupture		4,0	[N/mm ²]	EN 993-6
Thermal Conductivity	500 °C / 932 °F	0,55	[W/mK]	DR. KLASSE
	750 °C / 1382 °F	0,65	[W/mK]	DR. KLASSE
	1000 °C / 1832 °F	0,70	[W/mK]	DR. KLASSE

Overview of refractory insulating materials

property	fibres	ceramic foams	light weight refractory bricks	insulating monolithics
density	ultra low density	low density	medium	density
heat capacity	ightarrow less energy cor	mal mass nsumption → higher g rates	somewhat highe	er heat capacity
insulation	very good	good	good / n	nedium
resilience	Resilience → flexible	no resilience	no resilience	no resilience
risks	hazardous (carcinogenic)	No	no, only if fibres contained	
compressive strength	no compressive strength	low / good	good	low / good

Overview of refractory insulating materials

material base	Typical classification temperature °C	density g/cm³
light weight alumina	1800	0,5-0,6
alumina hollow spheres	1800	0,8-0,9
light weight chamotte	1350-1600	0,65-1,00
light weight mullite	1600	1,0-1,1
calciumaluminate (CA ₆)	1830	0,75
perlite	1300 (<1000)	0,07-0,12
vermiculite	1200 (<1000)	0,08-0,14
fly ash	1250	0,75-0,90
glass/mineral fibers*	<<1000	0,09
ceramic fibers*	1650	0,10
diatomaceous earth	900-1000	0,5-0,8
silica aerogel	800	0,1

* density strongly depends on final product (wool, fibre moduls, fire boards...)

Summary

- Wide spread properties effort multilayered linings
 - > Wear lining
 - > Permanent lining (safety lining)
 - > Insulation
- Combinbation of insulation and permanent lining needs:
 - > Material compatability at high temperature
 - > Minimum compression strenght or resilient behaviour of insulation material
 - > Similar thermal expansion of insulation and permanent lining
- Potentials for improvement:
 - > Thermal stable microstructure of refractory
 - > Avoidance of alterations (e.g. due to infiltration, further sintering...)
 - > Reduction of brittleness
 - > Realization of big shapes

Disclaimer

We assume that RHI AG will be mentioned as the owner of the photographs. In addition, we state explicitly that all utilisation rights are with RHI AG and every further use and/or publication requires written permission from RHI AG.

